Exploring Water Quality Transformation in Ridgetop Wetland Systems of the Daniel Boone National Forest
Amore, Adelaide S.
Department of Earth Science, Vassar College
Faculty Mentor: Malzone, Jonathan
NSF-Research Experiences for Undergraduates, Disturbance Ecology in Central Appalachia, 2021

Introduction
Natural ridgetop wetlands in the Daniel Boone National Forest of Eastern Kentucky are systems of groundwater and surface water exchange which provide crucial ecosystem services such as groundwater storage and drought support to local vegetation (Malzone 2019). In efforts to mitigate the loss of natural wetlands in Kentucky, several constructed wetlands have been built on ridgetops in the Daniel Boone National Forest. However, the constructed wetlands do not function properly because they have limited groundwater storage systems and a perennial hydroperiod. Their differences in physical hydrology suggest that constructed wetlands will also have different chemical hydrology than natural wetlands. This study conducts a first order water quality assessment of constructed wetland sites in the Daniel Boone National Forest, including samples from natural wetlands, local wetlands, and local streams. The preliminary water quality data collected in this study is used to identify biological processes that impact wetland water chemistry and to track evidence for road disturbance in natural waters. The major ion and nutrient analysis conducted in this study provides evidence for limestone weathering, atmospheric deposition, and subsurface redox reactions facilitated by bacteria in the wetland sites. Comparative differences in the water quality of natural and constructed wetlands were observed, particularly in higher bicarbonate levels at constructed wetlands due to stagnant water, high respiration, and road disturbance. Differences in the water quality of individual constructed wetlands suggest both natural variation and road disturbance influence water quality.

Methods
Acidified, non acidified, and bulk samples of surface water and groundwater (when accessible) were collected at each site twice across a five week period from June 1, 2021 to July 7, 2021. Baysors, syringes, and a hydraulic pump were used to extract the water from various wetland and stream sites. All samples were filtered with a 0.45 micron filter and refrigerated to preserve nutrients for lab analysis (Buskirk 2020). YSI Pro DDS was also used in the field to measure temperature, specific conductance, pH, nitrate, and chloride levels at each site. Acidified samples were measured for phosphate, ammonium, and nitrate absorbance through UV-Vis spectroscopy. An ion chromatograph was used to measure anion concentration of Cl⁻, SO₄²⁻, NO₃⁻, PO₄³⁻, Br⁻, and F⁻, and cation concentration of K⁺, Li⁺, Na⁺, NH₄⁺, Ca²⁺, Mg²⁺. Alkalinity titrations were performed on 100 mL of the filtered bulk samples in order to quantify the bicarbonate ion (Buskirk 2020). These titrations used 0.16 sulfuric acid and a 0.1 multiplier for a pH gran titration. 25 mL filtered samples with a 0.4 multiplier and 1.6 sulfuric acid were used for titrating samples of notable high bicarbonate or very cloudy water. Piper diagrams were generated to show the percentage of dominant ions in water samples by independent variables including constructed wetlands, natural wetlands, and reference waters.

Results and Discussion
Natural wetland sites generally had higher nutrient values than constructed wetlands. Figure 1 plots
Conclusions

Constructed wetlands in the Daniel Boone National Forest are showing both natural variation in their water chemistry and disturbance from dust impacts of limestone roads. Natural wetlands generally had higher nutrient concentrations than constructed wetlands because they are rainwater dominant. Constructed wetlands were much more likely to have their water quality altered due to high respiration and hardwood decay environments, conditions which increase the bicarbonate and potassium ion. Constructed wetlands vary chemically from both one another and from natural wetlands, suggesting that their ability to function as bioreactors and provide nutrient cycling services to local ecosystems is limited.

References


ADELAIDE AMORE is a junior at Vassar College studying Earth Science. JONATHAN MALZONE is a Professor of Geosciences at EKU. He is a faculty mentor in the REU program.

WALTER BOROWSKI is a Professor of Geosciences at EKU. He assisted in lab analysis of collected water samples for this project.

NOAH VARGAS and JONAH DOMINGUEZ are REU interns who assisted with field work for this project.

The study was conducted as part of the NSF Research Experience for Undergraduates and Research Experience for Teachers program: Disturbance Ecology in Central Appalachia — a ten-week summer research program hosted by Eastern Kentucky University.
Appendix A

This appendix contains figures relevant to the results of the study which are referenced in the Results and Discussion sessions of this write up.

Figure 1. Graph of Nitrate concentration (mg/L) by wetland site. Green bars represent natural wetland sites and blue bars represent constructed wetland sites.

Figure 2. Map of DC2 natural wetland wellfield nitrate levels in mg/L from sampling on June 1, 2021 and June 23, 2021.

Figure 3. Graph of Potassium ion concentration (mg/L) by wetland site and sampling date for constructed wetland sites. The sites are grouped by constructed wetlands in the Daniel Boone National Forest (left group) and local constructed wetlands (right group).

Figure 4. Graph of Ca\(^{2+}\) and Mg\(^{2+}\) concentration (mg/L) normalized to Na\(^+\) by site. Ratios of Ca\(^{2+}\), Mg\(^{2+}\), and Na\(^+\) less than or equal to 1 indicate waters impacted by silicate weathering. Ratios of Ca\(^{2+}\), Mg\(^{2+}\), and Na\(^+\) greater than 1 indicate waters impacted by carbonate weathering.

Figure 5. Piper Diagram plotting percentage of dominant ions in each water sample. A, B, C, and D, correspond to identifiable water types expanded upon in the Results and Discussion section.

Funded by the National Science Foundation, DIB 1950355.